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Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are important structural components of the central nervous system.

These fatty acids are transferred across the placenta, are present in human milk, and are accumulated in the brain and retina

during fetal and infant development. The high concentrations of DHA in the retina and of DHA and ARA in brain gray matter

suggests that these fatty acids have important roles in retinal and neural function. Animal studies have shown that depletion of

DHA from the retina and brain results in reduced visual function and learning deficits. The latter effects may be explained by

changes in the membrane bilayer that alter membrane-associated receptors and signal transduction systems, ion channel

activity, or direct effects on gene expression. DHA can be formed in the liver from alpha linolenic acid, but it is unclear if the rate

of DHA synthesis in humans is sufficient to support optimal brain and retinal development. Although there is no evidence that

the ability to form ARA from linoleic acid is limiting, supplementation with DHA reduces tissue ARA, possibly creating

a conditional need for ARA in infants with a dietary intake of DHA. The amount of DHA in human milk varies widely and is

positively correlated with visual and language development in breast-fed infants. Advances in understanding essential fatty acid

requirements will benefit from intervention studies that use functionally relevant tests to probe the deficiency or adequacy of

physiologically important pools of DHA and ARA in developing infants. (J Pediatr 2003;143:S1-S8)
Docosahexaenoic acid (DHA, 22:6n–3) and arachidonic acid (ARA, 20:4n–6) are
important structural components of the highly specialized membranes lipids of the
human central nervous system.1,2 DHA is the major polyunsaturated fatty acid in

the outer segments of the retina rods and cones, where it can constitute as much as 50% of
the fatty acids in phosphatidylethanolamine (PE) and phosphatidylserine (PS), and as
much as 80% of all the polyunsaturated fatty acids.1 These membranes are specialized for
the rapid transmission of light and contain 90% to 95% of the lipid as phospholipid. The
phospholipids contain unusual PE, PS, and phosphatidylcholine (PC) species in which
both acyl groups are DHA. Approximately 10% of the weight of the brain, and 50% of the
dry weight, is lipid. About half of this lipid is phospholipid, with approximately 20%
cholesterol, 15% to 20% cerebrosides, and smaller amounts of sulphatides and
gangliosides.2 The phospholipids of brain gray matter contain high proportions of DHA
in PE and PS and high amounts of ARA in phosphatidylinositol (PI). ARA is also present
in membrane phospholipids, particularly in PI throughout the body. Unlike other organs,
the dietary essential fatty acid linoleic acid (LA, 18:2n–6) usually represents <1% of brain
and retina fatty acids, and concentrations of a-linolenic acid (18:3n–3) are even lower.2

These usual characteristics of brain and retina phospholipids suggest that specific
mechanisms are available to allow the brain and retina to accumulate large amounts of
DHA and ARA and that DHA has functional roles specific to visual and neural processes.

Studies over the last three decades have provided evidence that depletion of DHA
from the developing retina and brain leads to abnormalities in electroretinogram and visual
evoked potential (VEP) responses and learning behaviors.3-8 Changes in cognitive

ARA Arachidonic acid, 20:4n–6
CDI Communicative developmental inventory
DHA Docosahexaenoic acid, 22:6n–3
DPA Docosapentaenoic acid, 22:5n–6
EPA Eicosapentaenoic acid, 20:5n–3
LA Linoleic acid, 18:2n–6
LNA a-Linolenic acid, 18:3n–3

PC Phosphatidylcholine
PE Phosphatidylethanolamine
PI Phosphatidylinositol
PS Phosphatidylserine
RBC Red blood cell
VEP Visual evoked potential
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performance and behavior and the transmission of visual and
auditory information could involve the effects of DHA on
neurotransmitter metabolism, ion channel activity, signaling
pathways, or gene expression.9-18 ARA is essential for normal
growth and is critically important through its role in cell sig-
naling and as a precursor to series 2 eicosanoids and series 3 leu-
kotrienes, which also play a role in synaptic transmission.19-21

The action of n–6 and n–3 fatty acids on metabolic and
physiologic pathways may involve 3 general mechanisms:
membrane phospholipid fatty acids influence the properties
of the microenvironment of membrane bilayers and this in
turn can effect the activity of membrane-associated proteins,
receptors, transport systems, and ion channels; membrane
phospholipids and their n–6 and n–3 fatty acids function as
signal molecules and as precursors for eicosanoids; and
finally, the n–6 and n–3 fatty acids have rapid and direct
effects on gene expression through peroxisome proliferator
activated receptor (PPAR)-dependent and PPAR-indepen-
dent mechanisms.12-19,22,23

Deficiency of key components for normal growth and
development, as illustrated for example by iron or iodine
deficiency, during key stages of development can have long-
term consequences for neural development in infants and
children.24,25 The difference in dietary intake of DHA and
ARA among infants fed milk and formula diets26 and their
important role in visual and neural function has focused
attention on the need to elucidate the ability of infants to form
ARA and DHA from their LA and LNA precursors,
respectively, the pathways by which these fatty acids are
transferred to the developing brain and retina, and the effects
of n–6 and n–3 fatty acid nutrition on infant growth and visual
and neural development. This review explores recent un-
derstanding of polyunsaturated fatty acid metabolism in
development, the supply of n–6 and n–3 fatty acids before
and after birth, and the implications for neural development.

Fig 1. Schematic of n-6 and n-3 fatty acid desaturation and
elongation.
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ARA and DHA are formed from LA and LNA,
respectively, in the liver by a series of alternating desaturation
(addition of a double bond) and elongation (addition of a
2-carbon unit) reactions.27-29 (Fig 1). Although LA and
LNA are formed in plants, they cannot be formed in
mammalian cells because of the absence of the D12 and 15
enzymes necessary to insert a double bond at the n (or x) 6 or 3
position of a fatty acid carbon chain. LA and LNA are,
therefore, considered essential dietary nutrients. Once ob-
tained from the diet, LA and LNA are further metabolized by
D6 desaturation, elongation, and D5 desaturation to form
ARA and eicosapentaenoic acid (EPA, 20:5n–3), respectively
(Fig 1). The D5 desaturase and subsequent steps in the
pathway are found in animal but not in plant cells. Preformed
ARA and DHA are present in the diet in meat, fish, and eggs
but not in fruits, vegetables, nuts, grains, or their products.30

Dairy products are also exceedingly low in DHA and ARA
and in their precursors LA and LNA.

Early studies established that dietary deficiency of n–6
fatty acids results in growth failure and skin lesions, which are
corrected by providing approximately 0.2% dietary energy as
ARA or 2% to 3% dietary energy as LA.19,20 LA has important
functions in cholesterol metabolism and in specific skin lipids,
and eicosatrienoic acid (20:3n–6) is an eicosanoid precursor.19

LNA is not known to serve any essential functions other than
as a precursor for EPA and DHA. A large proportion of LNA
is b-oxidized to acetyl CoA, which is recycled into cholesterol
and saturated and monounsaturated fatty acids, or further
metabolized to CO2.31-35 Unlike LA, acylation of LNA into
tissue lipids is very low. It is not yet known whether sufficient
LNA enters the desaturation pathway to maintain optimal
neural and retinal DHA in young infants. Elucidation of the
regulation of partitioning of LA and LNA among their
potential fates of direct esterification into tissue lipids,
b-oxidation, and desaturation will be useful in addressing
this.

For many years, it was assumed that fatty acid
desaturation occurred in the endoplasmic reticulum and that
the final steps in the synthesis of DHA and the n–6 DPA
(22:5n–6) involved a D4 desaturation of 22:5n–3 to 22:6n–3
and 22:4n–6 to 22:5n–6. However, it is now known that
the pathway involves synthesis of 24:5n–3 and 24:4n–6
by elongation of the 22 carbon chain products of D5
desaturase.27-29 The 24:5n–3 and 24:4n–6 are desaturated at
position 6 to yield 24:6n–3 and 24:6n–3, which are trans-
located to the peroxisomes where partial oxidation generates
DHA (22:6n–3) and DPA (22:5n–6).27 The elucidation of the
final steps of DHA synthesis has important implications for
the clinical treatment of infants with peroxisomal disorders
such as Zellweger syndrome, who may benefit from supple-
mentation with DHA.36,37

Dietary deficiency of LNA in developing animals results
in decreased DHA with a reciprocal increase in n–6 fatty acids,
particularly DPA in retina, whole brain, isolated brain
membranes, and specific brain regions.4,6,38-40 The decrease
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in brain and retina DHA is accompanied by altered
electroretinogram, decreased looking and VEP acuity, and
changes in learning behaviors, including performance in maze
tasks, habituation, exploratory activity in novel environments,
and brightness discrimination and olfactory-based learning
tasks.3-8,41-43 Polydypsia and increased sterotypic (locomotor)
activity have also been reported for monkeys fed diets very low
in LNA.44,45 The ability of developing animals to replace
DHA with DPA indicates that the desaturase enzyme activity
does not limit fatty acid desaturation and that DPA does not
provide a functional substitute for DHA despite its similar
carbon chain length.

Endogenous synthesis of DHA and ARA is believed
to use the same D6 and D5 desaturase enzymes. This can
result in competition between LA and LNA as well as
inhibition of the enzyme pathway by products of the same
and the opposing series of fatty acids.5 For example, high
dietary intakes of EPA or DHA result in decreased tissue
ARA and decreased formation of ARA derived eicosanoids
in favor of n–3 fatty acid derived eicosanoids.46-48 Early
clinical studies reported lower blood lipid ARA in preterm
infants fed formulas containing fish oil (as a source of DHA)
than in infants fed unsupplemented preterm formulas, lower
growth, and an association between ARA status and
growth.49-52 Lower growth has not been reported in term
infants fed formulas with DHA, although language de-
velopment assessed with the MacArthur Communicative
Developmental Inventory (CDI) at 14 months of age was
lower in term infants fed formula with DHA and no ARA
than in infants fed unsupplemented formula.53 These clinical
studies suggest that the balance of DHA or EPA+DHA
to ARA may be important, but specific data to explain
a mechanism of effect is lacking.

Many studies have shown that plasma and red blood cell
(RBC) DHA and ARA are lower in infants fed conventional
formulas without DHA and ARA than in infants who are
breast-fed.54-58 Adding oils containing DHA and ARA to
infant formulas in amounts approximating those in human
milk results in ‘‘normalization’’ of the plasma and RBC DHA
and ARA to levels within the range of those in breast-fed
infants.54-56 The increase in plasma and RBC DHA and ARA
after an increase in dietary DHA and ARA intake is well-
known from studies in adults.59,60 However, the physiological
significance of this with respect to the brain, which has
specialized pathways for fatty acid uptake and conserva-
tion,61,62 must be approached with caution. Studies in devel-
oping animals show that although n–3 fatty acid deficiency
does result in low DHA concentrations in brain, the increase
in DHA in brain, plasma, and RBC with increasing DHA
intake is not linear.63,64 Thus, tests of visual and neural
function are needed to assess deficiency or adequacy of
physiologically important pools of DHA in the brain of
infants. These studies are likely to have greater sensitivity
if based on advances in understanding of the role of DHA
in neural function. Newer approaches to assessing infant
development are discussed in other papers in this issue of
The Journal.65-68
Perinatal Biochemistry and Physiology of Long-Chain
Polyunsaturated Fatty Acids
Until recently, much of the biochemical information
gathered in studies with animals fed n–3 fatty acid-deficient
diets was limited to descriptions of diet-related changes in
fatty acids. In recent years, several studies have shown that n–3
fatty acid deficiency alters the metabolism of dopamine and
serotonin in the brain of rodents and young piglets.9-11,69-73

Particular interest has been given to the dopaminergic system
because of the role of dopamine in the cognitive advances of
early childhood, as a modulator of attention and motivation,
and in the visual pathways.74-77 The effects of DHA on
dopamine metabolism are region-specific within the brain and
involve changes in dopamine concentration, expression of the
vesicular monoamine transporter 2 mRNA and dopamine D2

receptor mRNA, and immunoreactivity of tyrosine hydroxy-
lase (the rate-limiting enzyme in dopamine synthesis).71-73

Although n–3 fatty acid deficiency results in reduced dopamine
in frontal cortex, recent studies have shown concentrations of
dopamine in the nucleus accumbens may be increased,9-11,72,73

which suggests that the mesocorticolimbic area functions
more and the mesocortical pathway is less active in
chronically n–3 fatty acid-deprived animals.11 Other recent
studies have provided evidence that n–3 fatty acids regulate
expression of genes involved in synaptic plasticity, cytoskel-
eton and membrane association, signal transduction, ion
channel formation, energy metabolism, and the retinoid X
receptor (RXR) in the brain.17,18 EPA and DHA have also
been shown to block the mitogenic effect of growth factors
that act through receptor tyrosine kinase (such as platelet
derived growth factor, fibroblast growth factor, epidermal
growth factor, insulin-like growth factor) and G-protein–
coupled receptors (such as bomberin, bradykinin, vasopres-
sin, thrombin, serotonin, and thromboxane A2) signaling
pathways.12,13 Polyunsaturated fatty acids also regulate key
genes related to hepatic lipid metabolism.22,23 Whether the
effects of n–3 or the n–3/n–6 fatty acid balance on neural
function or other aspects of growth and development are
mediated through regulatory effects on gene expression is an
important area for further study.

Polyunsaturated Fatty Acid Metabolism in
Development

Before birth, all of the n–6 and n–3 fatty acids
accumulated by the fetus must originate from the maternal
circulation through placental transfer, and after birth all must
be derived from the milk or formula diet and later from
complementary foods. The central question is the extent to
which the developing fetus and infant is able to utilize LA and
LNA or depends on exogenous ARA and DHA to meet the
needs for optimal development. Delta 6 and D 5 desaturase
activity has been shown in human fetal liver microsomes from
as early as 17 weeks of gestation.78,79 The activity of the
pathway to DHA, however, is not known. Several tracer
studies using stable isotopes of LA and LNA have shown that
preterm and term human infants are able to convert LA to
ARA and LNA to DHA.80-84 Integrated area-under-the-
curve estimates for the products of LNA metabolism suggest
S3



that preterm infants are as capable as term infants, and perhaps
more so, in converting LNA to DHA.84 Conversion of LNA
to DHA appears to be highly variable among individual
infants. The reasons for this variability are not known.
Although these tracer studies have provided important
demonstrations that conversion of LNA and LA occurs in
human infants, further developments are needed to allow
quantitative estimates of ARA and DHA accumulation at the
level of the tissues.

Tracer methodology has also been used to show that
DHA is transferred across the baboon placenta.85 and that
fetal baboons can form DHA from an intravenous dose of
[U-13C]-LNA.86 In the latter studies, approximately 0.6% of
the LNA administered was recovered in brain DHA, whereas
4.6% of a dose of DHA was recovered in brain. In contrast to
the studies with baboons, no apparent synthesis of DHA from
[U-13C] LNA was found in liver of fetal piglets at 70 to 72 or
110 to 112 days’ gestation (term, 115 days).87 Synthesis was
limited at EPA. Synthesis of DHA, however, increased
rapidly over the first 14 days after birth. Concentrations of
DHA and ARA are high in fetal plasma,88,89 which suggests
that fetal desaturase enzymes may be decreased secondary to
preferential transfer of DHA and ARA from the maternal
circulation.

Autopsy analyses have shown lower DHA but not ARA
in the brain of infants who had been fed formula without
DHA and ARA rather than breast-fed.90-92 The decrease in
DHA in frontal cortex PE of infants fed formula with 1.5%
LNA or 0.4% LNA was accompanied by increased ARA,
22:4n–6 and DPA,90 which is consistent with the increase in
n–6 fatty acid desaturation that accompanies an inadequate
supply of n–3 fatty acids.5 Although this could be interpreted
as evidence that dietary DHA is important for ‘‘optimal’’
DHA assimilation in developing human brain, reduced brain
DHA also results from inadequate dietary LNA or high LA/
LNA ratios.4-6,39,40,93

Fig 2. Fatty acid enrichment in fetal compared with maternal plasma.
Relative enrichment of LA, LNA, ARA, and DHA in fetal
compared with maternal plasma was calculated for each mother-fetal
cord plasma pair as the difference in the given fatty acid in the
maternal compared to fetal plasma/maternal plasma 3 100%.
Values shown are mean ± SEM, n = 55. Adapted from data
published in Reference 89.
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Although it is clear that all of the n–6 and n–3 fatty acids
accumulated in the fetus must ultimately be derived from the
mother by placental transfer, the process involved in this
transfer remains incompletely understood. The concentrations
of DHA and ARA are 300- to 400-fold higher in fetal
compared with maternal plasma phospholipids, whereas the
their LA and LNA precursors are lower (Fig 2).89 Delta 6 and
D5 desaturase are both present in placenta, and in ovine
placenta D6 desaturase activity increases near term.94,95 The
higher DHA and ARA in fetal than maternal plasma may
involve selective placental transfer, synthesis in placental or
fetal tissues, or selective fetal retention. Current research
suggests selective placental transfer of ARA and DHA that
involves a multistep process of uptake by membrane-
associated proteins with higher affinity and binding capacity
for ARA and DHA than for other fatty acids and intracellu-
lar translocation by specific cytosolic fatty acid-binding
proteins.96-99 However, despite selectivity in placental n–6
and n–3 fatty acid transport, women with higher plasma ARA
and DHA during gestation give birth to infants with higher
ARA and DHA, respectively.89,100,101 This is important
because in addition to potential positive effects on fetal growth
and neural development,89,100 a higher n–6 and n–3 fatty acid
status at birth does result in higher blood levels of ARA and
DHA for several weeks after birth in the infant.102,103

Polyunsaturated Fatty Acids in Human Milk

It is well appreciated that fat is the most variable
macronutrient in human milk and that the composition of the
component fatty acids is also exceedingly variable.104 Human
milk contains more than 150 different fatty acids, of which
LA, LNA, ARA, DHA, and several other n–6 and n–3 fatty
acids typically make up 15% to 20% of all the fatty acids
present. Studies published in the last 5 years show that human
milk from women who follow Western diets generally has 10%
to 17% LA, 0.8% to 1.4% LNA, 0.3% to 0.7% ARA, and 0.1%
to 0.5% DHA.100,105-112 Studies from other areas of the world
show concentrations of DHA as high as 2.8% in human milk
in Zhangzi, China,113 and 1% ARA and 1.1% DHA in the
milk of women in Japan,114 probably explained by a higher
intake of 22:6n–3 from fish and seafood among these
populations than in North America. Regression analyses and
calculation of Pearson correlation coefficients of the change in
DHA and ARA in mature human milk from predominantly
white women in Vancouver show that DHA has decreased by
50% from 0.4% to 0.2% (P < .001), whereas ARA has declined
from 0.7% to 0.4% (P < .001) over the period from 1988 to
1998 in this segment of the population (Fig 4). A similar
decline in human milk DHA in Australia has been re-
ported.115 Whether this is explained by a decrease in DHA
and ARA intake from meat, eggs, and/or fish is not known;
current mean intakes among pregnant women in Vancouver
are 160 mg/d DHA and 120 mg/d ARA (Fig 3).116 The
maternal plasma phospholipid DHA is significantly and
The Journal of Pediatrics � October 2003



positively correlated with the intake of DHA116 and with the
amount of DHA in human milk.100,108,109 Higher amounts of
DHA in human milk, as can be expected to result in higher
plasma and RBC DHA in the breast-fed infant.100,108,111 Our
recent prospective studies have addressed whether the
variability in human milk DHA is important for infant visual
and neural development. Visual acuity, at 2 and 12 months but
not 4 and 6 months, was significantly related to blood lipid
DHA at 2 months of age among term breast-fed infants.117

Infants in the lowest tertile of RBC PE DHA who received
milk with 0.17% DHA had significantly lower visual acuity
than infants in the highest tertile of RBC DHA who received
milk with 0.31% DHA (Fig 4). No relation was found
between the infants’ ARA or DHA status and scores on the
Bayley II mental or motor developmental indexes, novelty
preference assessed by the Fagan test, or on a standardized
object search task (Piaget A not B). However, the infants’
DHA status at 2 months of age was significantly related to the
ability to discriminate a nonnative (Hindi) retroflex and dental
phonetic contrast at 9 months of age and to language
production and comprehension assessed with the CDI at
14 and 18 months of age, after adjusting for confounding
variables.117,118 The RBC PE, RBC PC, and the plasma
phospholipid DHA at 2 months of age were all significantly
related to the vocabulary comprehension (r = 0.326, P = .01;
r = 0.359, P = .005; r = 0.342, P = .007, respectively) and
to vocabulary production (r = 0.367, P = .004; r = 0.410,
P = .001; r = 0.23, P = .05, respectively) at 18 months
of age. A significant association between sweep VEP acuity
and human milk DHA was also recently reported in a cross-
sectional study of breast-fed infants in Denmark.110 These

Fig 3. Change in DHA and ARA in mature human milk from
predominantly white women who followed North American diets
in Vancouver from 1988 to 1998. Data shown are mean ± SEM
data for 6 individual studies, representing 240 women. Decrease in
DHA and ARA is statistically significant, P < .001.
Perinatal Biochemistry and Physiology of Long-Chain
Polyunsaturated Fatty Acids
associations between DHA and visual and neural development
in breast-fed infants should not be confused with demonstra-
tion of causality; this requires dietary intervention that
modifies the intake of DHA but not other nutrients.
However, the evidence to show dependence of the fetal and
infant DHA on the maternal intake of DHA does raise
important questions on the n–3 fatty acid requirements of
pregnant and lactating women with respect to supporting
optimal visual and neural development in the infant.

Approaches to Assessing Requirement

The rate of nutrient accretion in fetal and infant tissues
or the amounts provided by human milk can be used as a guide
to estimating nutrient requirements of the preterm infants and
term infants 0 to 6 months, respectively. The mean
concentrations of DHA in human milk varies >10-fold, and
concentrations of ARA vary >3-fold among different popu-
lations of women; the variability in milk DHA and ARA
among individual women is even greater.104-115 This raises
important questions on how to use information on the com-
position of human milk fatty acids to estimate fatty acid
requirements for infants unless they are accompanied by
functional measures of infant development. The fatty acid
content of the third trimester human fetus has been estimated
from fatty acid analysis of autopsy tissue, data on the weight of
the human brain and cerebellum at different stages of
development, and tissue weights and fat contents obtained
by dissection.119,120 Accretion, estimated as the mean ± 2
SEM, was 67 mg/d n–3 fatty acids, which was mostly DHA,
and 552 mg/d n–6 fatty acids.120 Assuming the preterm infant
has an intake of 150 mL/kg per day of milk with 3.7g fat/dL,
then the milk fat will need to contain 1.2% DHA and 10% n–6
fatty acids to provide 67 mg DHA and 552 mg n–6 fatty acids
to a 1-kg infant. This suggests that preterm infants have high
needs for n–6 and n–3 fatty acids, which for n–3 fatty acids
could exceed that typically provided by human milk.

In summary, it will be apparent to the reader that
progress in the understanding of polyunsaturated fatty acid
requirements during growth and development will not be

Fig 4. The infants were divided into tertiles of RBC PE DHA
(g/100 g fatty acids) at 2 months of age: 6.30 to 8. 54, 8.55 to 10.78,
and 10.79 to 13.0. Mean concentration of DHA in mothers’ milk
for infants in the tertiles was 0.17, 0.22, and 0.31 g/100 g milk
fatty acids, respectively. *Visual acuity at 2 and 12 months of age
was significantly higher (P < .05) among infants in the highest
compared with lowest tertile of RBC PE DHA at 2 months of
age, when all infants were breast-fed. Adapted from Reference 117.
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achieved by descriptive analysis of the variable amounts of n–6
and n–3 fatty acids in human milk, blood, or other tissue
lipids. Rather, future advances will benefit from a marriage of
new knowledge on the functional roles of DHA and ARA
with the application of sensitive tests of neural and retinal
function to probe the physiologically important pools of DHA
and ARA in developing infants.
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